Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells.
نویسندگان
چکیده
A key function of the proximal tubule is retrieval of most of the vast quantities of NaCl and water filtered by the kidney. Physiological studies using brush border vesicles and perfused tubules have indicated that a major fraction of Cl(-) reabsorption across the apical membrane of proximal tubule cells occurs via Cl(-)-formate exchange. The molecular identity of the transporter responsible for renal brush border Cl(-)-formate exchange has yet to be elucidated. As a strategy to identify one or more anion exchangers responsible for mediating Cl(-) reabsorption in the proximal tubule, we screened the expressed sequence tag database for homologs of pendrin, a transporter previously shown to mediate Cl(-)-formate exchange. We now report the cDNA cloning of CFEX, a mouse pendrin homolog with expression in the kidney by Northern analysis. Sequence analysis indicated that CFEX very likely represents the mouse ortholog of human SLC26A6. Immunolocalization studies detected expression of CFEX, but not pendrin, on the brush border membrane of proximal tubule cells. Functional expression studies in Xenopus oocytes demonstrated that CFEX mediates Cl(-)-formate exchange. Taken together, these observations identify CFEX as a prime candidate to mediate Cl(-)-formate exchange in the proximal tubule and thereby to contribute importantly to renal NaCl reabsorption. Given its wide tissue distribution, CFEX also may contribute to transcellular Cl(-) transport in additional epithelia such as the pancreas and contribute to transmembrane Cl(-) transport in nonepithelial tissues such as the heart.
منابع مشابه
Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule.
The absorption of NaCl in the proximal tubule is markedly stimulated by formate. This stimulation of NaCl transport is consistent with a cell model involving Cl(-)-formate exchange in parallel with pH-coupled formate recycling due to nonionic diffusion of formic acid or H(+)-formate cotransport. The formate recycling process requires H(+) secretion. Although Na(+)-H(+) exchanger isoform NHE3 ac...
متن کاملNHE3: a Na+/H+ exchanger isoform of renal brush border.
Na+/H+ exchangers in the brush-border (luminal, apical) membrane of renal proximal tubules are responsible for active, transcellular reabsorption of NaHCO3 and NaCl. Although well characterized kinetically, the protein that mediates Na+/H+ exchange in the renal brush border has not been identified. Several Na+/H+ exchanger genes, including NHE1, NHE2, NHE3, and NHE4, are expressed in the kidney...
متن کاملSpecificity of anion exchange mediated by mouse Slc26a6.
Recently, CFEX, the mouse orthologue of human SLC26A6, was localized to the brush border membrane of proximal tubule cells and was demonstrated to mediate Cl(-)-formate exchange when expressed in Xenopus oocytes. The purpose of the present study was to examine whether mouse Slc26a6 can mediate one or more of the additional anion exchange processes observed to take place across the apical membra...
متن کاملFormate-stimulated NaCl absorption in the proximal tubule is independent of the pendrin protein.
A significant fraction of active chloride reabsorption across the apical membrane of the proximal tubule is mediated by a chloride/formate exchange process, whereby intracellular formate drives the transport of chloride into the cell. When chloride/formate exchange operates in parallel with Na(+)/H(+) exchange and H(+)-coupled recycling of formate, the net result is electroneutral NaCl reabsorp...
متن کاملLocal pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule.
The proximal tubule Na(+)/H(+) exchanger 3 (NHE3), located in the apical dense microvilli (brush border), plays a major role in the reabsorption of NaCl and water in the renal proximal tubule. In response to a rise in blood pressure NHE3 redistributes in the plane of the plasma membrane to the base of the brush border, where NHE3 activity is reduced. This NHE3 redistribution is assumed to provo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 16 شماره
صفحات -
تاریخ انتشار 2001